Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.

Identifieur interne : 000727 ( Main/Exploration ); précédent : 000726; suivant : 000728

Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.

Auteurs : Keyvan Karimi Galougahi [Australie] ; Chia-Chi Liu ; Alvaro Garcia ; Natasha A S. Fry ; Elisha J. Hamilton ; Helge H. Rasmussen ; Gemma A. Figtree

Source :

RBID : pubmed:23587884

Descripteurs français

English descriptors

Abstract

The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.

DOI: 10.1113/jphysiol.2013.252817
PubMed: 23587884
PubMed Central: PMC3832116


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.</title>
<author>
<name sortKey="Galougahi, Keyvan Karimi" sort="Galougahi, Keyvan Karimi" uniqKey="Galougahi K" first="Keyvan Karimi" last="Galougahi">Keyvan Karimi Galougahi</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
</author>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
</author>
<author>
<name sortKey="Fry, Natasha A S" sort="Fry, Natasha A S" uniqKey="Fry N" first="Natasha A S" last="Fry">Natasha A S. Fry</name>
</author>
<author>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
</author>
<author>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
</author>
<author>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23587884</idno>
<idno type="pmid">23587884</idno>
<idno type="doi">10.1113/jphysiol.2013.252817</idno>
<idno type="pmc">PMC3832116</idno>
<idno type="wicri:Area/Main/Corpus">000746</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000746</idno>
<idno type="wicri:Area/Main/Curation">000746</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000746</idno>
<idno type="wicri:Area/Main/Exploration">000746</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.</title>
<author>
<name sortKey="Galougahi, Keyvan Karimi" sort="Galougahi, Keyvan Karimi" uniqKey="Galougahi K" first="Keyvan Karimi" last="Galougahi">Keyvan Karimi Galougahi</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
</author>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
</author>
<author>
<name sortKey="Fry, Natasha A S" sort="Fry, Natasha A S" uniqKey="Fry N" first="Natasha A S" last="Fry">Natasha A S. Fry</name>
</author>
<author>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
</author>
<author>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
</author>
<author>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
</author>
</analytic>
<series>
<title level="j">The Journal of physiology</title>
<idno type="eISSN">1469-7793</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Action Potentials (drug effects)</term>
<term>Adenylyl Cyclases (metabolism)</term>
<term>Adrenergic beta-Antagonists (pharmacology)</term>
<term>Angiotensin-Converting Enzyme Inhibitors (pharmacology)</term>
<term>Animals (MeSH)</term>
<term>Captopril (pharmacology)</term>
<term>Colforsin (pharmacology)</term>
<term>Cyclic AMP (agonists)</term>
<term>Cyclic AMP (metabolism)</term>
<term>Cyclic AMP-Dependent Protein Kinases (antagonists & inhibitors)</term>
<term>Cyclic AMP-Dependent Protein Kinases (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Male (MeSH)</term>
<term>Metoprolol (pharmacology)</term>
<term>Myocytes, Cardiac (drug effects)</term>
<term>Myocytes, Cardiac (metabolism)</term>
<term>Myocytes, Cardiac (physiology)</term>
<term>NADPH Oxidases (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Kinase C (antagonists & inhibitors)</term>
<term>Protein Kinase C (metabolism)</term>
<term>Protein Kinase Inhibitors (pharmacology)</term>
<term>Protein Subunits (metabolism)</term>
<term>Rabbits (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sodium-Potassium-Exchanging ATPase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>AMP cyclique (agonistes)</term>
<term>AMP cyclique (métabolisme)</term>
<term>Adenylate Cyclase (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Antagonistes bêta-adrénergiques (pharmacologie)</term>
<term>Captopril (pharmacologie)</term>
<term>Colforsine (pharmacologie)</term>
<term>Cyclic AMP-Dependent Protein Kinases (antagonistes et inhibiteurs)</term>
<term>Cyclic AMP-Dependent Protein Kinases (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Inhibiteurs de l'enzyme de conversion de l'angiotensine (pharmacologie)</term>
<term>Inhibiteurs de protéines kinases (pharmacologie)</term>
<term>Lapins (MeSH)</term>
<term>Myocytes cardiaques (effets des médicaments et des substances chimiques)</term>
<term>Myocytes cardiaques (métabolisme)</term>
<term>Myocytes cardiaques (physiologie)</term>
<term>Mâle (MeSH)</term>
<term>Métoprolol (pharmacologie)</term>
<term>NADPH oxidase (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Potentiels d'action (effets des médicaments et des substances chimiques)</term>
<term>Protéine kinase C (antagonistes et inhibiteurs)</term>
<term>Protéine kinase C (métabolisme)</term>
<term>Sodium-Potassium-Exchanging ATPase (métabolisme)</term>
<term>Sous-unités de protéines (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="agonists" xml:lang="en">
<term>Cyclic AMP</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Protein Kinase C</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenylyl Cyclases</term>
<term>Cyclic AMP</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Glutaredoxins</term>
<term>NADPH Oxidases</term>
<term>Protein Kinase C</term>
<term>Protein Subunits</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" qualifier="agonistes" xml:lang="fr">
<term>AMP cyclique</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Protéine kinase C</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Action Potentials</term>
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Myocytes cardiaques</term>
<term>Potentiels d'action</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>AMP cyclique</term>
<term>Adenylate Cyclase</term>
<term>Cyclic AMP-Dependent Protein Kinases</term>
<term>Glutarédoxines</term>
<term>Myocytes cardiaques</term>
<term>NADPH oxidase</term>
<term>Protéine kinase C</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antagonistes bêta-adrénergiques</term>
<term>Captopril</term>
<term>Colforsine</term>
<term>Inhibiteurs de l'enzyme de conversion de l'angiotensine</term>
<term>Inhibiteurs de protéines kinases</term>
<term>Métoprolol</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Adrenergic beta-Antagonists</term>
<term>Angiotensin-Converting Enzyme Inhibitors</term>
<term>Captopril</term>
<term>Colforsin</term>
<term>Metoprolol</term>
<term>Protein Kinase Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Myocytes cardiaques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Myocytes, Cardiac</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Male</term>
<term>Oxidation-Reduction</term>
<term>Rabbits</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Lapins</term>
<term>Mâle</term>
<term>Oxydoréduction</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23587884</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-7793</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>591</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of physiology</Title>
<ISOAbbreviation>J Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.</ArticleTitle>
<Pagination>
<MedlinePgn>2999-3015</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1113/jphysiol.2013.252817</ELocationID>
<Abstract>
<AbstractText>The widely reported stimulation of the cardiac Na(+)-K(+) pump by protein kinase A (PKA) should oppose other effects of PKA to increase contractility of the normal heart. It should also reduce harmful raised myocyte Na(+) levels in heart failure, yet blockade of the β1 adrenergic receptor (AR), coupled to PKA signalling, is beneficial. We treated rabbits with the β1 AR antagonist metoprolol to modulate PKA activity and studied cardiac myocytes ex vivo. Metoprolol increased electrogenic pump current (Ip) in voltage clamped myocytes and reduced glutathionylation of the β1 pump subunit, an oxidative modification causally related to pump inhibition. Activation of adenylyl cyclase with forskolin to enhance cAMP synthesis or inclusion of the catalytic subunit of PKA in patch pipette solutions abolished the increase in Ip in voltage clamped myocytes induced by treatment with metoprolol, supporting cAMP/PKA-mediated pump inhibition. Metoprolol reduced myocardial PKA and protein kinase C (PKC) activities, reduced coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits and reduced myocardial O2(•-)-sensitive dihydroethidium fluorescence. Treatment also enhanced coimmunoprecipitation of the β1 pump subunit with glutaredoxin 1 that catalyses de-glutathionylation. Since angiotensin II induces PKC-dependent activation of NADPH oxidase, we examined the effects of angiotensin-converting enzyme inhibition with captopril. This treatment had no effect on PKA activity but reduced the activity of PKC, reduced β1 subunit glutathionylation and increased Ip. The PKA-induced Na(+)-K(+) pump inhibition we report should act with other mechanisms that enhance contractility of the normal heart but accentuate the harmful effects of raised cytosolic Na(+) in the failing heart. This scheme is consistent with the efficacy of β1 AR blockade in the treatment of heart failure.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Galougahi</LastName>
<ForeName>Keyvan Karimi</ForeName>
<Initials>KK</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chia-Chi</ForeName>
<Initials>CC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Alvaro</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fry</LastName>
<ForeName>Natasha A S</ForeName>
<Initials>NA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamilton</LastName>
<ForeName>Elisha J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rasmussen</LastName>
<ForeName>Helge H</ForeName>
<Initials>HH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Figtree</LastName>
<ForeName>Gemma A</ForeName>
<Initials>GA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>04</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Physiol</MedlineTA>
<NlmUniqueID>0266262</NlmUniqueID>
<ISSNLinking>0022-3751</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000319">Adrenergic beta-Antagonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000806">Angiotensin-Converting Enzyme Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047428">Protein Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1F7A44V6OU</RegistryNumber>
<NameOfSubstance UI="D005576">Colforsin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9G64RSX1XD</RegistryNumber>
<NameOfSubstance UI="D002216">Captopril</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E0399OZS9N</RegistryNumber>
<NameOfSubstance UI="D000242">Cyclic AMP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.11</RegistryNumber>
<NameOfSubstance UI="D017868">Cyclic AMP-Dependent Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.13</RegistryNumber>
<NameOfSubstance UI="D011493">Protein Kinase C</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.6.1.1</RegistryNumber>
<NameOfSubstance UI="D000262">Adenylyl Cyclases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.2.2.13</RegistryNumber>
<NameOfSubstance UI="D000254">Sodium-Potassium-Exchanging ATPase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GEB06NHM23</RegistryNumber>
<NameOfSubstance UI="D008790">Metoprolol</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000200" MajorTopicYN="N">Action Potentials</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000262" MajorTopicYN="N">Adenylyl Cyclases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000319" MajorTopicYN="N">Adrenergic beta-Antagonists</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000806" MajorTopicYN="N">Angiotensin-Converting Enzyme Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002216" MajorTopicYN="N">Captopril</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005576" MajorTopicYN="N">Colforsin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000242" MajorTopicYN="N">Cyclic AMP</DescriptorName>
<QualifierName UI="Q000819" MajorTopicYN="N">agonists</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017868" MajorTopicYN="N">Cyclic AMP-Dependent Protein Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008790" MajorTopicYN="N">Metoprolol</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032383" MajorTopicYN="N">Myocytes, Cardiac</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011493" MajorTopicYN="N">Protein Kinase C</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047428" MajorTopicYN="N">Protein Kinase Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000254" MajorTopicYN="N">Sodium-Potassium-Exchanging ATPase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23587884</ArticleId>
<ArticleId IdType="pii">jphysiol.2013.252817</ArticleId>
<ArticleId IdType="doi">10.1113/jphysiol.2013.252817</ArticleId>
<ArticleId IdType="pmc">PMC3832116</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Cardiovasc Med. 2010 Apr;20(3):85-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21130951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2010 Sep;62(3):525-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20716671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 18;286(11):9699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21228272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 May 27;286(21):18562-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2011 Jun;32(6):360-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21477871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2011 Jul 8;109(2):231-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21737818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2011 Aug 20;378(9792):704-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2011 Oct 28;109(10):1176-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22034480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1023-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22159993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 6;287(15):12353-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22354969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2000 Aug 15;68(1):41-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2000 Jan 7-21;86(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 4;287(19):15959-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22433860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2001 Sep;281(3):C1059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11502584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2002 Feb 1;53(2):355-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11827686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2002 Feb 15;539(Pt 1):133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11850507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 2002 May;444(1-2):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 2002 Apr 12;440(2-3):99-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12007528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2003 Mar 15;57(4):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharm Sci. 2012 Aug 15;46(5):279-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2012 May;22(4):83-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23040838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2013 Apr;70(8):1357-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cardiovasc Electrophysiol. 1994 Mar;5(3):241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7864922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2003 Mar 15;57(4):887-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 4;278(14):12094-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12560337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2004 Feb;286(2):C398-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1985 May 2-8;315(6014):63-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2581143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Physiol. 1989 Sep;94(3):511-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2607333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1992 Apr;449:689-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1326051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1995 Feb;268(2 Pt 1):C366-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7864075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1995;57:387-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1996 Jul;271(1 Pt 1):C172-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8760043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 1996 Sep;278(3):1435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8819531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 1996 Aug 1;494 ( Pt 3):697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8865067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1999 Sep;277(3 Pt 1):C461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10484333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5727-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2005 Jun 15;565(Pt 3):815-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2005 Aug 5;97(3):252-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2005 Oct 1;345(1):47-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16125124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2005 Sep 30;97(7):629-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16123335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Renal Physiol. 2006 Feb;290(2):F241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16403837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2007 Mar;292(3):C1070-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 May 15;42(10):1465-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2008 Jan 15;77(2):380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 2;284(1):436-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2009 Jul 17;105(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2009 May;19(4):111-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19818946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 30;285(18):13712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2010 Jul;160(5):1048-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20590599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2010 Dec 21;122(25):2699-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135361</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<name sortKey="Fry, Natasha A S" sort="Fry, Natasha A S" uniqKey="Fry N" first="Natasha A S" last="Fry">Natasha A S. Fry</name>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
</noCountry>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Galougahi, Keyvan Karimi" sort="Galougahi, Keyvan Karimi" uniqKey="Galougahi K" first="Keyvan Karimi" last="Galougahi">Keyvan Karimi Galougahi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000727 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000727 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23587884
   |texte=   Protein kinase-dependent oxidative regulation of the cardiac Na+-K+ pump: evidence from in vivo and in vitro modulation of cell signalling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23587884" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020